基于非线性扩散滤波的运动细胞检测方法

时间:2015-05-04 13:43 来源:www.fabiaoba.com 作者:林玉狮等 点击:

  摘要:将非线性扩散滤波和背景差分法相结合,提出了一种新的运动细胞检测方法。通过在时间域内使用非线性扩散滤波,消除了背景差分法对阈值的强依赖性,并消除了图像噪声,增强了图像边界。实验结果表明,新方法能够较好地检测出运动细胞。 

  关键词关键词:运动细胞;背景差分法;非线性扩散滤波 

  0引言 

  在生物医药学和疾病防治研究领域,为了进行针对性的研究,需要获取细胞的各种参数,如运动轨迹、移动速度、分裂周期等。而这些参数的获取,需要对细胞进行检测和追踪。细胞形态不确定性、交叉和重叠等因素,导致采取传统手工分析方法效率和精准度都非常低下。因此,面对大量的细胞图像数据,迫切需要一种高效、精准,且能够自动对细胞行为进行分析的方法来对其加以处理。 

  在过去的几十年中,细胞追踪作为一个热点课题,已经被广大学者所持续关注和研究。细胞检测作为细胞追踪中重要的第一步,同样被科研工作者潜心研究。Meanshift算法和背景差分法是基于模型扩展的方法,Meanshift方法可以快速追踪到视频序列移动的物体,但通常并不能很好地描绘出物体的轮廓。在该领域内Xiuzhuang和Yao[12]提出了一种较好方法,他们在粒子滤波框架中引入方向自适应均值飘移算法,以此来提高细胞追踪中的粒子滤波。Snake模型则要求相邻的视频帧之间要有重叠。Xufei等[3]提出使用背景差分法来追踪非惰性细胞,他们在进行细胞追踪前,通过使用分水岭算法并结合细胞的特征来实现细胞的识别和分割。Fu shujun等[4]采用双向扩散的非线性扩散滤波方程,实现图像的边缘检测并增强图像质量。 

  本文提出了一种新的运动细胞检测算法,在时间域内采用非线性扩散滤波,可以在一个宽泛的范围内选择出一个合适的阈值,消除了背景差分法对阈值的强依赖性。 

  1研究方法 

  1.1背景差分法 

  细胞追踪的第一步就是要检测出目标细胞。背景差分法[5]是对运动目标进行检测的常用方法,它是基于模型扩展的一种方法。该方法的理论架构如下:首先,需要建立背景模型,然后用当前帧的图像减去背景模型,把相减所得到的差分图像与设定的阈值进行比较,若差分图像阈值大于设定阈值,则表明该像素偏离背景模型较大,为检测的运动目标像素,反之为背景像素。其理论公式如下: 

  其中,Gk(x,y)为当前图像帧,Bk(x,y)为背景模型,Rk(x,y)为相差图像,即包含运动目标的二值化图像,T为设置的阈值。1表示检测到的目标像素,0表示背景像素。 

  背景差分法是一种很快速的方法,所需内存较小。但是,该方法存在一个严重缺陷,即高度依赖于阈值的选择。为了克服这种缺陷,本文提出了一种将非线性扩散滤波和背景差分法相结合的运动细胞检测方法。 


www.fabiaoba.com),是一个专门从事期刊推广期刊发表、投稿辅导、发表期刊的网站。
  本站提供如何投稿辅导、发表期刊,寻求论文刊登合作,快速投稿辅导,投稿辅导格式指导等解决方案:省级论文刊登/国家级论文刊登/ CSSCI核心/医学投稿辅导/职称投稿辅导。

投稿邮箱:fabiaoba365@126.com
 在线咨询: 投稿辅导275774677投稿辅导1003180928
 在线咨询: 投稿辅导610071587投稿辅导1003160816
 联系电话:18796993035

联系方式
李老师QQ:发表吧客服610071587 陈老师QQ:发表吧客服275774677 刘老师QQ:发表吧客服1003160816 张老师QQ:发表吧客服1003180928 联系电话:18796993035 投稿邮箱:fabiaoba365@126.com
期刊鉴别
  • 刊物名称:
  • 检索网站:
热门期刊
发表吧友情提醒

近来发现有些作者论文投稿存在大量剽窃、抄袭行为,“发表吧”对此类存在大量剽窃、抄袭的论文已经停止编辑、推荐。同时我们也提醒您,当您向“发表吧”投稿时请您一定要保证论文的原创性、唯一性,这既是对您自己负责,更是对他人的尊敬。

此类投稿的论文如果发表之后,对您今后的人生和事业将造成很大的麻烦,后果不堪设想,请您一定要慎重,三思而后行。

如因版权问题引起争议或任何其他原因,“发表吧”不承担任何法律责任,侵权法律责任概由剽窃、抄袭者本人承担。

 
QQ在线咨询
论文刊登热线:
137-7525-9981
微信号咨询:
fabiaoba-com

友情链接

申请链接