基于音频识别的无人值守变电站设备在线监测(2)

时间:2013-10-29 09:07 来源:发表吧 作者:曹文明 点击:

  首先,在变电站需要监测的电气设备上安装了多个声音传感器(如图1所示).每个数据采集器负责多路音频数据的采集;然后数据收集器负责收集某个站点多个数据采集器的音频数据,并上传至站点监控主机.变电站监控主机根据设备故障状况和设备优先顺序,分时处理多路音频数据.对音频数据进行变换和频谱分析、提取音频数据的特征向量,然后把特征向量输入训练好的神经网络进行识别,判断发出该音频数据的设备运行状况和故障类型,并根据判断结果采取警报或其它控制措施.
  集控站主机位于变电站集控中心,通过以太网与各变电站主机进行远程通信,是工作人员与各变电站音频监控系统进行人机交互的平台,可方便地对多个无人值守变电站点进行远程的集中监管.集控站工作人员利用服务器保存的历史记录,不但可查询任一指定站点的设备当前和过去的音频数据,还可通过集控站的数据汇总分析,绘制出一段时间来某个电气设备的波形和频谱幅度变化曲线图,方便工作人员综合分析该设备的变化情况.另外,集控中心还可结合集控站其他非音频监控系统的信息,对某个变电站设备状态进行全面分析,更加准确地判断它的运行状态,确保设备安全稳定运行.集控主机主要功能如图3所示.
  2系统关键技术实现
  2.1音频数据采集器
  数据采集器是实现变电站设备无人值守音频监控的重要部件,它负责电气设备音频数据的处理和初步判断,内部结构如图4所示.
  数据采集器对声音传感器采集声音信号的处理包括:信号放大、低通滤波、模数转换、声音压缩、信号初步判断、串行通信等处理过程.核心处理器为凌阳SPCE061A型音频处理机,该处理器集成了信号放大、模数转换、串行通信接口等部件,具有强大的声音处理能力,适合本项目音频信号的处理.SPCE061A型单片机IO端口的IOB7和IOB10可以从通用IO口设置为串行通信口(UART),为RS422通信提供了硬件条件.串行通信口的波特率从1500bps到51200bps(51.2Kbps)可调,通信速度能够满足状态监控的要求.为了实现多机通信,每个音频数据采集器均有自己的一个地址.通过单片机读取7个IO的二进制编码,实现采集器的地址编码,数据收集器根据这个地址编码轮询各数据采集器,实现与各监测点的多机通信.
  为了减少上层服务器对音频数据的计算和处理,底层的数据采集器还需对采集的音频数据在本地进行简单的故障预判断,通过预判断提前发现所采集的音频是否属于故障音频.其基本原理是:首先对典型故障音频进行特征统计,并把统计结果保存在本地数据库中,然后把当前音频数据特征快速与故障音频特征进行比对.例如,当出现音频信号的幅度明显过高、过低、噪声信号过大等情况时,就能快速判断其属于故障音频.对于这些异常情况,数据采集器马上将判断结果通过RS485总线发送给数据收集器,再经数据收集器告知监控主机.
  经数据采集器预判断不属于故障音频的数据,还需上传至监控主机作进一步分析.当数据采集器收到监控主机发出监听某个设备的要求时,立即将该设备的声音数据进行压缩和编码传输给数据收集器.数据收集器利用串口服务器,把RS485协议数据转换为TCP/IP协议的网络数据与监控主机进行通信,把音频数据传输到监控主机后完成进一步的判断处理.
  2.2设备运行状态判别模块
  设备运行状态判别模块是变电站音频监控系统的核心模块,基本判断过程如图5所示.监控主机对上传的音频数据进行频域变换、频谱分析,提取音频信号的MFCC(MelFrequencyCepstrumCoefficient,即Mel频率倒谱系数)特征参数[6],然后把特征向量输入训练好的正弦基神经网络进行计算,判断出该音频数据表征的设备运行状态,同时监控主机根据判断结果做出相应控制和处理,保证设备安全运行.
  2.2.1音频信号特征提取
  有效提取语音特征是识别语音的关键.人的内耳基础膜对外来信号会产生调节作用,它实质上充当了一个滤波器组,具有在嘈杂的环境中以及各种变异情况下仍能正常地分辨出各种语音的功能,即使信噪比降低时它仍有较好的识别性能.Mel频率就是基于人耳听觉这一特性提出来的[7],它与Hz频率成非线性对应关系;而且MFCC算法还模拟人耳滤波器功能设计了听觉前端滤波器组模型,这样计算的结果能很好地体现音频信号的主要信息,所以MFCC提取的音频参数广泛地应用于语音识别[8]、音频分类和检索领域[9].本项目也是通过提取电气设备声音的Mel频率倒谱特征参数作为判断识别的特征参数,Mel频率倒谱系数的参数提取步骤如下.
  2.2.3音频特征识别器的训练
  利用神经网络对音频数据进行自动分类,首先需要收集各种电气设备良好和故障状态下的音频数据进行训练.在变电站设备中采集m个音频信号的样本,经MFCC算法分别提取m个样本的特征参数,作为该状态的训练样本.每个特征参数是含有N个元素的向量,根据神经网络的模型及权值修正方法,设计了如下训练方法.
  3实验与仿真

www.fabiaoba.com),是一个专门从事期刊推广期刊发表、投稿辅导、发表期刊的网站。
  本站提供如何投稿辅导、发表期刊,寻求论文刊登合作,快速投稿辅导,投稿辅导格式指导等解决方案:省级论文刊登/国家级论文刊登/ CSSCI核心/医学投稿辅导/职称投稿辅导。

投稿邮箱:fabiaoba365@126.com
 在线咨询: 投稿辅导275774677投稿辅导1003180928
 在线咨询: 投稿辅导610071587投稿辅导1003160816
 联系电话:18796993035

联系方式
李老师QQ:发表吧客服610071587 陈老师QQ:发表吧客服275774677 刘老师QQ:发表吧客服1003160816 张老师QQ:发表吧客服1003180928 联系电话:18796993035 投稿邮箱:fabiaoba365@126.com
期刊鉴别
  • 刊物名称:
  • 检索网站:
热门期刊
发表吧友情提醒

近来发现有些作者论文投稿存在大量剽窃、抄袭行为,“发表吧”对此类存在大量剽窃、抄袭的论文已经停止编辑、推荐。同时我们也提醒您,当您向“发表吧”投稿时请您一定要保证论文的原创性、唯一性,这既是对您自己负责,更是对他人的尊敬。

此类投稿的论文如果发表之后,对您今后的人生和事业将造成很大的麻烦,后果不堪设想,请您一定要慎重,三思而后行。

如因版权问题引起争议或任何其他原因,“发表吧”不承担任何法律责任,侵权法律责任概由剽窃、抄袭者本人承担。

 
QQ在线咨询
论文刊登热线:
137-7525-9981
微信号咨询:
fabiaoba-com

友情链接

申请链接